bullshit in the sense explored by Frankfurt (On Bullshit, Princeton, 2005): the models are in an important way indifferent to the truth of their outputs.
…
false statements by ChatGPT and other large language models are described as “hallucinations”, which give policymakers and the public the idea that these systems are misrepresenting the world, and describing what they “see”. We argue that this is an inapt metaphor which will misinform the public, policymakers, and other interested parties.
…
their primary goal, insofar as they have one, is to produce human-like text. They do so by estimating the likelihood that a particular word will appear next, given the text that has come before.
The machine does this by constructing a massive statistical model, one which is based on large amounts of text, mostly taken from the internet. This is done with relatively little input from human researchers or the designers of the system; rather, the model is designed by constructing a large number of nodes, which act as probability functions for a word to appear in a text given its context and the text that has come before it. Rather than putting in these probability functions by hand, researchers feed the system large amounts of text and train it by having it make next-word predictions about this training data. They then give it positive or negative feedback depending on whether it predicts correctly. Given enough text, the machine can construct a statistical model giving the likelihood of the next word in a block of text all by itself.
This model associates with each word a vector which locates it in a high-dimensional abstract space, near other words that occur in similar contexts and far from those which don’t. When producing text, it looks at the previous string of words and constructs a different vector, locating the word’s surroundings – its context – near those that occur in the context of similar words. We can think of these heuristically as representing the meaning of the word and the content of its context. But because these spaces are constructed using machine learning by repeated statistical analysis of large amounts of text, we can’t know what sorts of similarity are represented by the dimensions of this high-dimensional vector space. Hence we do not know how similar they are to what we think of as meaning or context. The model then takes these two vectors and produces a set of likelihoods for the next word; it selects and places one of the more likely ones—though not always the most likely. Allowing the model to choose randomly amongst the more likely words produces more creative and human-like text; the parameter which controls this is called the ‘temperature’ of the model and increasing the model’s temperature makes it both seem more creative and more likely to produce falsehoods. The system then repeats the process until it has a recognizable, complete-looking response to whatever prompt it has been given.